Target B-1 Extra Practice

1. Write each expression as a power. Then, evaluate.

Power
a) 6×6
b) $4 \times 4 \times 4$
c) $9 \times 9 \times 9 \times 9 \times 9$
d) $2 \times 2 \times 2 \times 2 \times 2 \times 2$
2. Write each expression as a power. Identify the base and the exponent in each power. Then, evaluate.
Power Base Exponent
Evaluate
a) $5 \times 5 \times 5$
\qquad
b) $1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1$ \qquad
\qquad
\qquad
c) $7 \times 7 \times 7 \times 7 \times 7 \times 7$
\qquad
d) 305 \qquad
\qquad
\qquad
3. Write each power as repeated multiplication. Then, evaluate.

Repeated Multiplication
a) 6^{3}
b) 2^{5}
c) 3^{4}
d) 10^{6}
e) 4^{2}
f) 20^{2}
4. Write each power as repeated multiplication. Then, evaluate.

Repeated Multiplication

a) $(-2)^{4}$
b) -2^{4}
c) $(-4)^{3}$
d) -4^{3}
e) $-(-6)^{3}$
f) $-(-6)^{4}$
5. Complete the table.

Repeated Multiplication	Exponential Form	Value
a) $(-3) \times(-3) \times(-3) \times(-3)$		
b) $(-2) \times(-2) \times(-2) \times(-2) \times(-2)$		
c)	$(-6)^{5}$	
d)		-125

6. Bacteria reproduce by splitting in two. If a single bacteria divides every 20 min, how many bacteria will a single bacteria produce after 8 h ?
a) Write the answer in exponential form. \qquad
b) Calculate the answer.
c) What assumption did you make to answer the question?

Extra Practice Answers

1. a) $6^{2}, 36$ b) $4^{3}, 64$
c) $9^{5}, 59049$ d) $2^{6}, 64$
2. a) $5^{3}, 5,3,125$ b) $1^{7}, 1,7,1$
c) $7^{6}, 7,6,117649$
d) $305^{1}, 305,1,305$
3. a) $6 \times 6 \times 6,216$
b) $2 \times 2 \times 2 \times 2 \times 2,32$
c) $3 \times 3 \times 3 \times 3,81$
d) $10 \times 10 \times 10 \times 10 \times 10 \times 10,1000000$
e) $4 \times 4,16$ f) $20 \times 20,400$
4. a) $(-2) \times(-2) \times(-2) \times(-2), 16$
b) $-(2 \times 2 \times 2 \times 2),-16$
c) $(-4) \times(-4) \times(-4),-64$
d) $-(4 \times 4 \times 4),-64$
e) $-[(-6) \times(-6) \times(-6)], 216$
f) $-[(-6) \times(-6) \times(-6) \times(-6)],-1296$
5. Example:

Repeated Multiplication	Exponential Form	Value
a) $(-3) \times(-3)$ $\times(-3) \times(-3)$	$(-3)^{4}$	81
b) $(-2) \times(-2)$ $\times(-2) \times(-2)$ $\times(-2)$	$(-2)^{5}$	-32
c) $(-6) \times(-6)$ $\times(-6) \times(-6)$ $\times(-6)$	$(-6)^{5}$	-
d) $(-5) \times(-5)$ $\times(-5)$	$(-5)^{3}$	-125

6. a) 2^{24} b) 16777216
c) Example: That no bacteria died.

Target B-1

Extra Practice 1

Lesson 2.1: What Is a Power?

1. Identify the base of each power.
a) 6^{3}
b) 2^{7}
c) $(-5)^{4}$
d) -7^{0}
2. Use repeated multiplication to show why 3^{5} is not the same as 5^{3}.
3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}				
$(-10)^{3}$				
	-6	2		
			$1 \times 1 \times 1 \times 1 \times 1$	

4. Write each product as a power, then evaluate.
a) 6×6
b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$
c) $10 \times 10 \times 10 \times 10$
d) $-(8 \times 8 \times 8)$
e) $(-8)(-8)(-8)$
f) $-(-8)(-8)(-8)$
5. Write each power as repeated multiplication, then evaluate.
a) 7^{5}
b) 4^{6}
c) -9^{3}
d) $(-5)^{5}$
6. Evaluate each power. For each power:

- Are the brackets needed?
- If your answer is yes, what purpose do the brackets serve?
a) $(-6)^{5}$
b) $-(6)^{5}$
c) $-(-6)^{5}$
d) $\left(-6^{5}\right)$

7. Predict whether each answer is positive or negative, then evaluate.
a) $(-3)^{2}$
b) $(-3)^{3}$
c) -3^{2}
d) $-(-3)^{3}$
8. Is the value of -2^{4} different from the value of $(-2)^{4}$? Explain.
9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is $\$ 60.00$.
a) Express the number of stamps as a power and in standard form.
b) Use grid paper. Draw a picture to represent this power.
c) What is the value of one stamp?

Extra Practice 1

Lesson 2.1

1. a) 6
b) 2
c) -5
d) 7
2. $3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$ and $5^{3}=$
$5 \times 5 \times 5=125$
3.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}	4	4	$4 \times 4 \times 4 \times 4$	256
$(-10)^{3}$	-10	3	$(-10)(-10)$ (-10)	-1000
$(-6)^{2}$	-6	2	$(-6)(-6)$	36
1^{5}	1	5	$1 \times 1 \times 1 \times$ 1×1	1

4. a) $6^{2}=36$
b) $3^{6}=729$
c) $10^{4}=10000$
d) $-8^{3}=-512$
f) $-(-8)^{3}=512$
5. a) $7 \times 7 \times 7 \times 7 \times 7=16807$
b) $4 \times 4 \times 4 \times 4 \times 4 \times 4=4096$
c) $-9 \times 9 \times 9=-729$
d) $(-5)(-5)(-5)(-5)(-5)=-3125$
6. a) $(-6)^{5}=-7776$; the brackets are needed; they indicate that the base is -6 .
b) $-(6)^{5}=-7776$; the brackets are not needed; the base is 6 and the power is negative.
c) $-(-6)^{5}=7776$; the brackets are needed; they indicate that the base is -6 and the sign of the expression is opposite to the sign of the value of $(-6)^{5}$.
d) $\left(-6^{5}\right)=-7776$; the brackets are not needed.
7. a) $(-3)^{2}$ is positive because the answer is the product of an even number of negative integers:

9
b) $(-3)^{3}$ is negative because the answer is the product of an odd number of negative integers: -27
c) -3^{2} is negative because the answer is the opposite of the product of an even number of positive integers: -9
d) $-(-3)^{3}$ is positive because the answer is the opposite of the product of an odd number of negative integers: 27
8. Yes, their values are different; $-2^{4}=-2 \times 2 \times 2 \times 2=-16$ and $(-2)^{4}=(-2)(-2)(-2)(-2)=16$
9. a) $10^{2}=100$
b) Students should draw a 10 by 10 square on grid paper.
c) $60 ¢$ or $\$ 0.60$

Target B-1 Extra Practice 2

Lesson 2.2: Powers of Ten and the Zero Exponent

1. Evaluate each power.
a) 4^{0}
b) 23^{0}
c) $(-6)^{0}$
d) 1^{0}
e) -1^{0}
f) $(-1)^{0}$
2. Write each number as a power of 10 .
a) 10000
b) 1000000
c) one billion
d) ten
e) 1
3. Use powers of 10 to write each number.
a) 700000000000
b) 7000
c) 77077
d) 7000007
4. Write each number in standard form.
a) $\left(8 \times 10^{5}\right)$
b) $\left(9 \times 10^{7}\right)+\left(9 \times 10^{6}\right)+\left(5 \times 10^{5}\right)$
c) $\left(2 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(6 \times 10^{0}\right)$
d) $\left(5 \times 10^{5}\right)+\left(4 \times 10^{8}\right)+\left(8 \times 10^{0}\right)+\left(3 \times 10^{4}\right)$
5. Write these numbers in standard form, then order them from least to greatest.
fifty-five hundred
50500
$\left(5 \times 10^{6}\right)+\left(5 \times 10^{0}\right)$ five hundred thousand
5×10^{4}
500500
6. a) Complete this table for a base of 10 .

Exponent	Power	Standard Form
6	10^{6}	
5		
4		
3		
2		
1		
0		

b) Use patterns to describe why the power with an exponent of 0 is equal to 1 .

Extra Practice 2

Lesson 2.2

1. a) 1
b) 1
c) 1
d) 1
e) -1
f) 1
2. a) 10^{4}
b) 10^{6}
c) 10^{9}
d) 10^{1}
e) 10^{0}
3. a) 7×10^{11} b) 7×10^{3}
c) $\left(7 \times 10^{4}\right)+\left(7 \times 10^{3}\right)+\left(7 \times 10^{1}\right)+\left(7 \times 10^{0}\right)$
d) $\left(7 \times 10^{6}\right)+\left(7 \times 10^{0}\right)$
4. a) 800000
b) 99500000
c) 2206
d) 400530008
5. In standard form: $5500,50500,5000005,500000,50000,500500$

From least to greatest: 5500, 50 000, $50500,500000,500500,5000005$
6. a)

Exponent	Power	Standard Form
6	10^{6}	1000000
5	10^{5}	100000
4	10^{4}	10000
3	10^{3}	1000
2	10^{2}	100
1	10^{1}	10
0	10^{0}	1

b) In the $2^{\text {nd }}$ column, the exponents are decreasing by 1 each time. In the $3^{\text {rd }}$ column, the number of zeros after the 1 decreases by 1 ; each time we divide by 10 to get the number below, and in the last row: $10 \div 10=10^{0}=1$

