Target B-1 Extra Practice

1. Write each expression as a power. Then, evaluate.

	Power	Evaluate
a) 6 × 6		
b) 4 × 4 × 4		
c) 9 × 9 × 9 × 9 × 9		
d) 2 × 2 × 2 × 2 × 2 × 2 × 2		

2. Write each expression as a power. Identify the base and the exponent in each power. Then, evaluate.

	Power Evaluate	Base	Exponent
a) 5 × 5 × 5			
b) $1 \times 1 $	1		
c) 7 × 7 × 7 × 7 × 7 × 7 × 7			
d) 305			

3. Write each power as repeated multiplication. Then, evaluate.

	Repeated Multiplication	Evaluate
a) 6 ³		
b) 2 ⁵		
c) 3 ⁴		
d) 10 ⁶		
e) 4 ²		
f) 20 ²		

4. Write each power as repeated multiplication. Then, evaluate.

	Repeated Multiplication	Evaluate
a) (-2) ⁴		
b) -2 ⁴		
c) (-4) ³		
d) -4 ³		
e) -(-6) ³		
f) −(−6) ⁴		

5. Complete the table.

Repeated Multiplication	Exponential Form	Value
a) $(-3) \times (-3) \times (-3) \times (-3)$		
b) $(-2) \times (-2) \times (-2) \times (-2) \times (-2)$		
c)	(-6) ⁵	
d)		-125

- **6.** Bacteria reproduce by splitting in two. If a single bacteria divides every 20 min, how many bacteria will a single bacteria produce after 8 h?
 - a) Write the answer in exponential form.
 - **b)** Calculate the answer.
 - c) What assumption did you make to answer the question?

Extra Practice Answers

1. a) 6², 36 **b)** 4³, 64 **c)** 9⁵, 59 049 **d)** 2⁶, 64 **2.** a) 5³, 5, 3, 125 b) 1⁷, 1, 7, 1 **c)** 7⁶, 7, 6, 117 649 **d)** 305¹, 305, 1, 305 **3.** a) 6 × 6 × 6, 216 **b)** 2 × 2 × 2 × 2 × 2, 32 **c)** 3 × 3 × 3 × 3, 81 **d)** $10 \times 10 \times 10 \times 10 \times 10 \times 10$, 1 000 000 **e)** 4 × 4, 16 **f)** 20 × 20, 400 **4. a)** (-2) × (-2) × (-2), 16 **b)** $-(2 \times 2 \times 2 \times 2)$, -16**c)** $(-4) \times (-4) \times (-4)$, -64 **d)** $-(4 \times 4 \times 4), -64$ **e)** $-[(-6) \times (-6) \times (-6)]$, 216 **f)** $-[(-6) \times (-6) \times (-6) \times (-6)]$, -1296 **5.** Example:

Repeated	Exponential	
Multiplication	Form	Value
a) (-3) × (-3)	(-3)4	81
x (-3) x (-3)		
b) (-2) × (-2)	(-2)5	-32
× (−2) × (−2)		
× (-2)		
c) (-6) x (-6)	(-6)5	-
x (-6) x (-6)		7776
× (-6)		
d) (-5) x (-5)	(-5) ³	-125
× (-5)		

6. a) 2²⁴ **b)** 16 777 216

c) Example: That no bacteria died.

Target B-1

Extra Practice 1

Lesson 2.1: What Is a Power?

- **1.** Identify the base of each power. **a)** 6^3 **b)** 2^7 **c)** $(-5)^4$ **d)** -7^0
- **2.** Use repeated multiplication to show why 3^5 is not the same as 5^3 .
- **3.** Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^4				
$(-10)^3$				
	-6	2		
			$1 \times 1 \times 1 \times 1 \times 1$	

4. Write each product as a power, then evaluate.

a)	6×6	b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$
c)	$10\times10\times10\times10$	d) $-(8 \times 8 \times 8)$
e)	(-8)(-8)(-8)	f) -(-8)(-8)(-8)

5. Write each power as repeated multiplication, then evaluate. a) 7^5 b) 4^6 c) -9^3 d) $(-5)^5$

6. Evaluate each power. For each power:

- Are the brackets needed?
- If your answer is yes, what purpose do the brackets serve? **a**) $(-6)^5$ **b**) $-(6)^5$ **c**) $-(-6)^5$ **d**) (-6^5)
- 7. Predict whether each answer is positive or negative, then evaluate. a) $(-3)^2$ b) $(-3)^3$ c) -3^2 d) $-(-3)^3$
- 8. Is the value of -2^4 different from the value of $(-2)^4$? Explain.
- 9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00.
 - a) Express the number of stamps as a power and in standard form.
 - **b**) Use grid paper. Draw a picture to represent this power.
 - c) What is the value of one stamp?

Extra Practice 1

Lesson 2.1

1. a) 6 b) 2 c) -5 d) 7

2. $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$ and $5^3 = 5 \times 5 \times 5 = 125$

3.

Power	Base	Exponent	Repeated Multiplication	Standard Form
44	4	4	$4 \times 4 \times 4 \times 4$	256
(–10) ³	-10	3	(-10)(-10) (-10)	-1000
(6) ²	-6	2	(6)(6)	36
1 ⁵	1	5	1 × 1 × 1 × 1 × 1	1

- 4. a) $6^2 = 36$ b) $3^6 = 729$ c) $10^4 = 10\ 000$ d) $-8^3 = -512$ e) $(-8)^3 = -512$ f) $-(-8)^3 = 512$
- **5. a)** $7 \times 7 \times 7 \times 7 \times 7 = 16807$
 - **b)** $4 \times 4 \times 4 \times 4 \times 4 \times 4 = 4096$
 - **c)** $-9 \times 9 \times 9 = -729$
 - **d)** (-5)(-5)(-5)(-5)(-5) = -3125
- **6.** a) $(-6)^5 = -7776$; the brackets are needed; they indicate that the base is -6.
 - **b)** $-(6)^5 = -7776$; the brackets are not needed; the base is 6 and the power is negative.
 - c) $-(-6)^5 = 7776$; the brackets are needed; they indicate that the base is -6 and the sign of the expression is opposite to the sign of the value of $(-6)^5$.
 - **d)** $(-6^5) = -7776$; the brackets are not needed.
- 7. a) $(-3)^2$ is positive because the answer is the product of an even number of negative integers: 9
 - b) (-3)³ is negative because the answer is the product of an odd number of negative integers: -27
 - c) -3² is negative because the answer is the opposite of the product of an even number of positive integers: -9
 - d) -(-3)³ is positive because the answer is the opposite of the product of an odd number of negative integers: 27
- 8. Yes, their values are different; $-2^4 = -2 \times 2 \times 2 \times 2 = -16$ and $(-2)^4 = (-2)(-2)(-2)(-2) = 16$
- **9. a)** $10^2 = 100$
 - b) Students should draw a 10 by 10 square on grid paper.
 - **c)** 60¢ or \$0.60

Target B-1

Extra Practice 2

Le	sso	on 2.2: Po	wers	of Ter	and th	e Ze	ero Exponent	
1.	Ev a) d)	valuate each 4 ⁰ 1 ⁰	power. b) e)	23^{0} -1^{0}		c) f)	$(-6)^0$ $(-1)^0$	
2.	W: a) d)	rite each nu 10 000 ten	mber as b) e)	s a powe 1 000 1	er of 10. 000	c)	one billion	
3.	Us a) c)	e powers of 700 000 00 77 077	E 10 to v 00 000	write ead	ch numbe	r. b) d)	7000 7 000 007	
4.	W: a) b) c) d)	rite each nu (8×10^5) $(9 \times 10^7) +$ $(2 \times 10^3) +$ $(5 \times 10^5) +$	mber in - (9×10) - (2×10) - (4×10)	$(0^{6}) + (5)^{0^{6}} + (6)^{0^{6}} + (8)^$	rd form. $\times 10^{5}$) $\times 10^{0}$) $\times 10^{0}$) +	(3 ×	10 ⁴)	
5.	W	rite these nu	imbers i	in stand	ard form,	then	order them from	least to greatest.
	fif	ty-five hund	lred	1	$50\ 500$		$(5 \times 10^6) + (5)$	$\times 10^{0}$)
	110	e nundred ti	nousand	J	3×10		300 300	
6.	a)	Complete	this tab	le for a	base of 10	0.		
		Exponent	Po	wer	S	tand	ard Form	
		6	1	06				
		5						_
		4						_
		3						_
		2						
		1						
		0						

b) Use patterns to describe why the power with an exponent of 0 is equal to 1.

Extra Practice 2

Lesson 2.2

- **1.** a) 1 b) 1 c) 1 d) 1 e) -1 f) 1 **2.** a) 104 b) 106 c) 10
- **2.** a) 10^4 b) 10^6 c) 10^9 d) 10^1 e) 10^0
- **3.** a) 7×10^{11} b) 7×10^{3} c) $(7 \times 10^{4}) + (7 \times 10^{3}) + (7 \times 10^{1}) + (7 \times 10^{0})$ d) $(7 \times 10^{6}) + (7 \times 10^{0})$
- **4.** a) 800 000 b) 99 500 000 c) 2206 d) 400 530 008

6. a)

Exponent	Power	Standard Form
6	10 ⁶	1 000 000
5	10 ⁵	100 000
4	10 ⁴	10 000
3	10 ³	1000
2	10 ²	100
1	10 ¹	10
0	10 ⁰	1

b) In the 2nd column, the exponents are decreasing by 1 each time. In the 3rd column, the number of zeros after the 1 decreases by 1; each time we divide by 10 to get the number below, and in the last row: $10 \div 10 = 10^0 = 1$